
September 24, 2021 | Friday

Apache Ka�ka: Core Concepts & Use Cases
These days, considering data as streams is a well-known methodology. By and large, it allows the
structuring of data engineering architecture in a more productive manner than when considering data as
a state. Yet, to aid the streaming data model, additional technologies need to be utilized. In this regard, one
of the most well-known tools utilized today for data streaming is Apache Ka�ka. In this blog let us talk about
the core concepts of Ka�ka and the best situations for deploying the same.

What is Apache Ka�ka?

Apache Ka�ka was initially built at LinkedIn as a messaging queue, yet today is signi�icantly much more
than that. It is an incredible asset for working with data streams and can be utilized in several use cases.

Ka�ka is distributed, which implies that it very well may be scaled up when required. It simply requires
adding new nodes or servers to the Ka�ka cluster.

Apache Ka�ka is an open-source streaming platform that has been written in Java and Scala, and is
consistent with numerous well-known programming languages. It has the capacity to deal with a huge load
of data per unit of time and likewise has low a dormancy ratio, which aids in the processing of data in
real-time.

Ka�ka is not the same as conventional message queues and holds the message after it was consumed for a
while (by default seven days), while most messaging queues eliminate messages at once, following the
clients’ af�irmation. Additionally, such messaging queues push messages to clients and monitor their load.
It chooses the number of messages that ought to be in processing by every single client (there are settings
available for this conduct), whereas Ka�ka upholds fetching messages by clients (pulling). As intended,
Ka�ka was prepared to scale horizontally, by attaching additional nodes. Traditional messaging queues
however, hope to scale vertically, by increasing the capacity. These are the main contrasts among Ka�ka and
traditional messaging frameworks.

What is Apache Ka�ka?

The initial point that each and every individual who works with streaming applications ought to
comprehend is the concept, which is a diminutive piece of data. For instance, when a user registers within
the system, an event is created. You can likewise ponder on an event like a message with data, which can be
processed and saved at a certain place, if at all required. This event is the message wherein the data
regarding details such as the user’s name, email, password, and so forth can be added. This highlights that
Ka�ka is the platform that works well when it comes to streaming of events.

Events are continually composed by producers. They are called producers since they compose events or
data to Ka�ka. There are numerous sorts of producers. Instances of clients include web servers, parts of
applications, whole applications, IoT gadgets, monitoring specialists, and so on. A new user registration
event can be produced by the component of the site that is liable for client

registrations. A climate sensor (IoT device) can deliver hourly "climate" events with data regarding
temperature, wind speed, humidity, etc. Therefore, the producer is whatever creates information.

Customers are elements that utilize information (events). At the end of the day, they can get data written by
producers and utilize this data. There are a ton of instances of data consumers. It is additionally a fact that
similar entities (components of applications, entire applications, monitoring frameworks, and so forth) can
go about as the two producers and consumers. Everything relies upon the speci�ic architecture and design
of the system. Be that as it may, as a rule, entities like databases, data lakes, and data analytics applications
go about as data consumers on the grounds that the produced or generated data typically should be stored
away some place.

Ka�ka is the agent between applications that produce data and applications that burn-through data. The
Ka�ka framework is known as the Ka�ka cluster since it can comprises of numerous elements which are
called nodes and the software components that run on a node is called a Broker. Also, this is the reason
Ka�ka is classi�ied as a distributed framework. Information in the Ka�ka cluster is circulated among more
than a few brokers. There are manifold duplicates of the same information in the Ka�ka cluster, which are
called replicas. This makes Ka�ka more steady, fault-tolerant, and dependable. In the event that an error
takes place with one broker, the data won't be lost, and another broker will begin to play out the functions
of the broken part.

Producers distribute events to Ka�ka topics. Consumers can subscribe to subjects to access the data they
require. Ka�ka topics are a permanent log of events or sequences. Every topic can serve information to
numerous consumers, which is why producers are in some cases referred to as publishers, and consumers
are called subscribers.

Partitions serve to repeat information across brokers. Every Ka�ka topic is isolated into segments and each
partition can be set on a different node.

Best Apache Ka�ka Use Cases

Here are some common use cases of Apache Ka�ka.

Real-time data processing

Numerous advanced system frameworks expect data to be prepared and processed when it is available. For
instance, in the �inance vertical, it is imperative to block fraudulent exchanges the moment they happen. In
predictive support, the models ought to continually analyse streams of metrics from the working
equipment and trigger alarms immediately post deviations are recognized. IoT devices are frequently
pointless without real-time data handling and processing capacity and Ka�ka can be a helpful source here
as it has the ability to send data from producers to data handlers as well as data storages.

Real-time data processing

This is the use case Ka�ka was initially created for, to be utilized in LinkedIn. Every event that happens in
the application can be distributed to the dedicated Ka�ka topic. User clicks, enlistments, likes, time spent on
speci�ic pages by clients, orders, and so forth – this load of events can be sent to Ka�ka’s topics. Then, at that
point, different applications or customers can subscribe in to topics and cycle the received data for various
purposes including observing, analysis, reports, newsfeeds, user personalization, etc.

Logging and monitoring framework

Apache Ka�ka can be utilized for logging or monitoring as it is feasible to distribute and publish logs into

 Ka�ka topics. The logs can be put away in a Ka�ka cluster for quite a while. There, they can be accumulated
or processed. It is feasible to construct pipelines that comprise of a few producers where the logs are
changed with a particular goal in mind. Eventually, logs can be saved in a conventional log-storage solution.

When it comes to monitoring, assume that you have an extraordinary component of the framework that is
devoted to observing and cautioning. This component i.e. monitoring application can peruse data from
Ka�ka topics. This makes Ka�ka helpful for observing purposes, particularly in case it is real-time
monitoring.

When To Not To Use Ka�ka?

- Ka�ka is pointless when you need to deal with just a modest quantity of messages each day, generally
 up to a few thousand. Ka�ka is intended to adapt to a heavy load and in case you have relatively little
 data it is recommended to go for traditional messaging queues.

- Ka�ka is an incredible answer for conveying messages. However, notwithstanding the way that Ka�ka
 has a Stream API, it isn't not dif�icult to perform data changes on the �ly. You need to construct an
 intricate pipeline of associations and interactions between producers and consumers and after
 wards maintain the whole framework. This requires a ton of work and therefore, you should try not
 to utilize Ka�ka for ETL jobs, particularly where real-time processing is required.

- At the point when you need to utilize a straightforward task queue you should utilize proper instru
 ments. Ka�ka isn't intended to be a task queue. There are different tools that are better suited for
 such use cases.

- On the off chance that you need a database, it is recommended to utilize a database and not Ka�ka.
 The reason being, Ka�ka isn't suitable for long term storage. It upholds saving data during a speci�ied
 retention period, however for the most part, it ought not to be extremely long. Ka�ka likewise stores
 excess duplicates of data, which can skyrocket storage expenses. Databases are improved and
 optimized for the storage of new data. They have additionally �lexible query languages and support
 productive data inserting and retrieving. In the event that relational databases are not what you
 need for your use case, attempt to search for a non-relational solution instead of Ka�ka.

Final Thoughts

In this article, we portrayed Apache Ka�ka and the most appropriate use cases for deploying this tool. It
ought to be not dif�icult to perceive any reason why Ka�ka is an incredible streaming platform. Ka�ka is a
signi�icant tool in situations requiring real-time data processing and application activity tracking, or
monitoring purposes. Simultaneously, Ka�ka shouldn't be utilized for information changes on the �ly, data
storing, and when all you need is a basic task queue.

CIGNEX comes with an Apache Ka�ka specialization and is a certi�ied Con�luent Partner, and helps
enterprises to build Big Data and IoT applications using Apache Ka�ka & Con�luent for real-time data
streaming and analysis. The aim is to provide enterprises with deep insights into their Ka�ka pipelines
through enhanced metrics provided by the Con�luent Platform. The experienced Apache Ka�ka consultants
come with proven capabilities in establishing streamlined data pipelines & building streaming applications
and provide services such as Apache Ka�ka Application Development, Apache Ka�ka Integration, Apache
Ka�ka Implementation, Apache Ka�ka Support and Managed Services, as well as Professional Services.

The article is authored by Rebecca Sampson, Senior Marketer, CIGNEX

